
Prolog
Programming in Logic

Lecture #6

Ian Lewis, Andrew Rice

Today's discussion
Videos

Countdown

Graph search

Q: You mentioned that we can use cuts and negation
in the exam. Can we also use implication (->)?

Q: You mentioned that we can use cuts and negation
in the exam. Can we also use implication (->)?

A: No. You also can’t use ‘;’, assume any library
predicates, or use any extra-logical stuff (except cut)
like findAll, call etc.

Q: When figuring out what a Prolog program does,
how can we work out which of the arguments are
intended to be supplied with constants, and which
with variables.

A: Did I manage to answer this last time?
% foo(+X,-Y) succeeds if output number Y
% is double input number X
foo(X,Y) :- Y is 2 * X.

Q: What does Prolog allow us to do (other than
coding in a different way) that other languages can't?
Not meaning to sound dismissive just curious of
applications!

Q: What does Prolog allow us to do (other than
coding in a different way) that other languages can't?
Not meaning to sound dismissive just curious of
applications!

A:
* Pure Prolog subset 'Datalog' used for network verification.
* Prolog used for Java Virtual Machine verification
* Prolog quite good at digital logic simulation
... theorem provers written in Prolog.

* Sooner or later, some method of reasoning with NN data will emerge.

https://tfc-app2.cl.cam.ac.uk/~ijl20/xcoffee

CDBB Digital Architecture for Real-Time Data

Sensor Node

Node network

MQTT Sensor Hub

Local sensors

MQTT
FeedHandler RT Analysis

Msg
Router RTMonitor

MsgFiler
Web Host

FeedHandler RT Analysis RT Analysis RTMonitor

RTClient

RTClient

Real-time dataflow

Request-Response data

MsgFiler
Web Host

Storage

Storage

FeedHandler

subscribe

realtime

subscribe

realtime

Other
Sensor
Data

Other
Sensor
Data

Building:
IfM / CL / CEng

CDBB
Site-level

Key:

I.Lewis, R.Mortier
Dec. 2019

Sensor Node

Node network

MQTT

MQTT

Real-time dataflow

Request-Response data

Other
Real-time
Sensor
Data

Key:

CDBB Sensor Node Architecture
I.Lewis, R.Mortier
Dec. 2019

Platform
FeedHandler

Sensor Hub

SensorLink

RemoteSensor

SensorLink

RemoteSensor

LocalSensor

Sensor

PlatformLink

Event
Recognition

EventBus

Sensors producing real-time data

CDBB Digital Architecture for Real-Time Data

Sensor Node

Node network

MQTT Sensor Hub

Local sensors

MQTT
FeedHandler RT Analysis

Msg
Router RTMonitor

MsgFiler
Web Host

FeedHandler RT Analysis RT Analysis RTMonitor

RTClient

RTClient

Real-time dataflow

Request-Response data

MsgFiler
Web Host

Storage

Storage

FeedHandler

subscribe

realtime

subscribe

realtime

Other
Sensor
Data

Other
Sensor
Data

Building:
IfM / CL / CEng

CDBB
Site-level

Key:

I.Lewis, R.Mortier
Dec. 2019

Where does our logic fit in ?

Q: Operators & precedence? :- op(700, xfx, arc).
300 xfx mod Arithmetic function
400 yfx * Arithmetic function
400 yfx / Arithmetic function
400 yfx // Arithmetic function
500 fx + Arithmetic function
500 fx - Arithmetic function
500 yfx + Arithmetic function
500 yfx - Arithmetic function
700 xfx < Predicate
700 xfx = Predicate
700 xfx =.. Predicate
700 xfx < Predicate
700 xfx > Predicate
700 xfx >= Predicate
700 xfx is Predicate
900 fy \+ Predicate
1000 xfy , Predicate
1100 xfy ; Predicate
1200 fx :- Introduces a directive
1200 xfx :- head :- body. separator

1. Precedence 0..1200 (0 highest)

2. (...) has precedence 0

3. :- and , both have low precedence so you can have

(complicated stuff) :- (more complicated stuff), ... ,

 4. . is an "end delimiter"

fx Prefix (non-associative).
fy Prefix (right-associative) e.g. fact fact 3.
xfx Infix (non-associative)
xfy Infix (right-associative)
yfx Infix (left-associative)

Q: Operators & precedence?
arc(X,Y)
op(700, xfx, arc).

Used 700 because that's typical for a relation (aka Predicate)
Used xfx because we won't have A arc B arc C.

a arc b.
b arc c.
c arc d.
c arc e.

path(A,B) :- A arc B.
path(A,B) :- A arc X, path(X,B).

Countdown

Countdown [25, 50, 75, 100, 3, 6], Target 952

Start with 6 values: [25, 50, 75, 100, 3, 6]

Remove any 2 values (e.g. [75, 3]) and generate symbolic formula for this pair, add
to head of remaining list, e.g.

[(75+3), 25, 50, 100, 6] (note list now of length 5)

If head of list evaluates to 952: SUCCESS

else repeat, e.g. new pair [(75 + 3), 100], (leaves [25, 50, 6])

generate new operator for pair (e.g. +): [(75 + 3) + 100, 25, 50, 6] (length 4)

Countdown [25, 50, 75, 100, 3, 6], Target 952

countdown([Soln|_],Target, Soln) :- eval(Soln,Target).

countdown(L,Target,Soln) :- choose(2,L,[A,B],R), arithop(A,B,C), countdown([C|R],Target,Soln).

generate pair,
generate arithmetic op on pair

Solution?
generate pair
generate arithmetic op on pair

Solution?
generate pair
generate arithmetic op on pair

Solution?
...

choose

% choose(N, List, Chosen, Remaining)
choose(0,L,[],L).
choose(N,[H|T],[H|C], Remaining) :- N > 0, M is N-1, choose(M,T,C,Remaining).
choose(N,[H|T],Chosen, [H|S]) :- N > 0, choose(N,T,Chosen,S).

% choose(N, List, Chosen, Remaining)
choose(0,L,[],L).
choose(N,[H|T],[H|C], Remaining) :- N > 0, M is N-1, choose(M,T,C,Remaining).
choose(N,[H|T],Chosen, [H|S]) :- N > 0, choose(N,T,Chosen,S).

Base case - choose zero from list L, Chosen = [], Remaining = L.

choose

% choose(N, List, Chosen, Remaining)
choose(0,L,[],L).
choose(N,[H|T],[H|C], Remaining) :- N > 0, M is N-1, choose(M,T,C,Remaining).
choose(N,[H|T],Chosen, [H|S]) :- N > 0, choose(N,T,Chosen,S).

Base case - choose zero from a list L, Chosen = [], Remaining = L.

First recursive case: choose Head, choose N-1 from Tail

choose

% choose(N, List, Chosen, Remaining)
choose(0,L,[],L).
choose(N,[H|T],[H|C], Remaining) :- N > 0, M is N-1, choose(M,T,C,Remaining).
choose(N,[H|T],Chosen, [H|S]) :- N > 0, choose(N,T,Chosen,S).

Base case - choose zero from a list L, Chosen = [], Remaining = L.

First recursive case: choose Head, choose N-1 from Tail

Seconds recursive case: ignore Head, choose N from Tail, Remaining = H + remaining from tail.

choose

An aside/caution regarding functional support...

% choose(N, List, Chosen, Remaining)
choose(0,L,[],L).
choose(N,[H|T],[H|C], Remaining) :- N > 0, choose(N-1,T,C,Remaining).
choose(N,[H|T],Chosen, [H|S]) :- N > 0, choose(N,T,Chosen,S).

E.g. also:

... , take(max(L), L, Remaining) , ...

choose

An aside/caution regarding functional support...

% choose(N, List, Chosen, Remaining)
choose(0,L,[],L).
choose(N,[H|T],[H|C], Remaining) :- N > 0, M is N-1, choose(M,T,C,Remaining).
choose(N,[H|T],Chosen, [H|S]) :- N > 0, choose(N,T,Chosen,S).

E.g. also:

... , max(L,M), take(M, L, Remaining) , ...

Does choose look familiar to you ?

choose

F L A T T E N I N G

% choose(N, List, Chosen, Remaining)
choose(0,L,[],L).
choose(N,[H|T],[H|C], Remaining) :- N > 0, M is N-1, choose(M,T,C,Remaining).
choose(N,[H|T],Chosen, [H|S]) :- N > 0, choose(N,T,Chosen,S).

For our purposes choose/4 could be choose/3...

choose is basically take: -- I've swapped arguments around, keeping you on your toes...

take(H,[H|T],T).
take(X,[H|T],[H|R]) :- take(X,T,R).

choose

Alternative version of choose
% choose(N, List, Chosen, Remaining)
choose(0, L, [], L).
choose(N,[H|T], [H|C], Remaining) :- N > 0, M is N-1, choose(M,T,C,Remaining).
choose(N,[H|T], Chosen, [H|S]) :- N > 0, choose(N,T,Chosen,S).

choose is basically take:

take(H, [H|T], T).
take(X, [H|T], [H|R]) :- take(X,T,R).

E.g. we can write a take_list(A,B,C):

% take_list(+A,+B,-C) succeeds if list C is the remaining elements from B after removing list A.
% call with A instantiated to a list of variables, and B ground.
take_list([], L, L).
take_list([H|T],L,R) :- take(H,L,LR), take_list(T, LR, R).

?- take_list([A,B], [a,b,c], L).
A=a, B=b, L = [c]

eval : reducing arithmetic terms to a number.

countdown([Soln|_],Target, Soln) :- eval(Soln,Target).

countdown(L,Target,Soln) :- choose(2,L,[A,B],R), arithop(A,B,C), countdown([C|R],Target,Soln).

generate pair,
generate arithmetic op on pair

Solution?
generate pair
generate arithmetic op on pair

Solution?
generate pair
generate arithmetic op on pair

Solution?
...

eval : reducing arithmetic terms
% eval(+ArithTerm, -N)
eval(A+B,C) :- eval(A,A1), eval(B,B1), C is A1 + B1.
eval(A*B,C) :- eval(A,A1), eval(B,B1), C is A1 * B1.
eval(A/B,C) :- eval(A,A1), eval(B,B1), C is A1 / B1.
eval(A-B,C) :- eval(A,A1), eval(B,B1), C is A1 - B1.
eval(A,A) :- number(A).

I'm showing an alternative to Andy's plus(A,B) etc. terms, simply to show infix operators +, -, *, /
which already conveniently have the required precedence.

Can you spot anything here?

eval : reducing arithmetic terms
% eval(+ArithTerm, -N)
eval(A+B,C) :- eval(A,A1), eval(B,B1), C is A1 + B1.
eval(A*B,C) :- eval(A,A1), eval(B,B1), C is A1 * B1.
eval(A/B,C) :- eval(A,A1), eval(B,B1), C is A1 / B1.
eval(A-B,C) :- eval(A,A1), eval(B,B1), C is A1 - B1.
eval(A,A) :- number(A).

I'm showing an alternative to Andy's plus(A,B) etc. terms, simply to show infix operators +, -, *, /
which already conveniently have the required precedence.

? Did you spot this alternative implementation:
eval(ArithTerm, N) :- N is ArithTerm.

arithop - generating arithmetic expressions
% arithop(+A, +B, -ArithTerm)
arithop(A,B,A+B).
arithop(A,B,A-B) :- eval(A,D), eval(B,E), D>E.
arithop(B,A,A-B) :- eval(A,D), eval(B,E), D>E.
arithop(A,B,A*B) :- eval(A,D), D \== 1, eval(B,E), E \== 1.
arithop(A,B,A/B) :- eval(B,E), E \== 1, E \== 0, eval(A,D), 0 is D rem E.
arithop(B,A,A/B) :- eval(B,E), E \== 1, E \== 0, eval(A,D), 0 is D rem E

We're only generating arithmetic terms relevant the the puzzle, i.e. we're using the result of the
eval to check the term.

* There's a minor detail/choice here, whether the 'choose' generates both pairs (e.g. 3,4 and 4,3)
or this can be provided by arithop as we are doing here.

Countdown - alternative version of countdown/3

Current version:
countdown([Soln|_],Target, Soln) :- eval(Soln,Target).

countdown(L,Target,Soln) :- choose(2,L,[A,B],R),
 arithop(A,B,C),
 countdown([C|R],Target,Soln).

Countdown - alternative version of countdown/3

countdown([Soln|_],Target, Soln) :- eval(Soln,Target).

countdown(L,Target,Soln) :- choose(2,L,[A,B],R),
 arithop(A,B,C),
 countdown([C|R],Target,Soln).

test(Soln,Target,Soln) :- eval(Soln,Target).

countdown(L,Target,Soln) :- take_list([A,B], L, R),
 arithop(A,B,C),
 (test(C, Target, Soln) ; countdown([C|R],Target, Soln)).

Countdown - alternative version of countdown/3

countdown([Soln|_],Target, Soln) :- eval(Soln,Target).

countdown(L,Target,Soln) :- choose(2,L,[A,B],R),
 arithop(A,B,C),
 countdown([C|R],Target,Soln).

test(Soln,Target,Soln) :- eval(Soln,Target).

countdown(L,Target,Soln) :- take_list([A,B], L, R),
 arithop(A,B,C),
 test_or_calc(C,Target,Soln,R).

test_or_calc(C,Target,Soln,_) :- test(C, Target, Soln).
test_or_calc(C,Target,Soln,R) :- countdown([C|R],Target, Soln) .

Countdown - alternative version of countdown/3

countdown([Soln|_],Target, Soln) :- eval(Soln,Target).

countdown(L,Target,Soln) :- choose(2,L,[A,B],R),
 arithop(A,B,C),
 countdown([C|R],Target,Soln).

test(Soln,Target,Soln) :- eval(Soln,Target).

countdown(L,Target,Soln) :- take_list([A,B], L, R),
 arithop(A,B,C),
 (test(C, Target, Soln) ; countdown([C|R],Target, Soln)).

Countdown Iterative Deepening

The whole point of this section is that you understand
how/why to apply iterative deepening, rather than assume
a specific implementation.

test(Soln,Target,Soln) :- eval(Soln,Target).

countdown(L,Target,Soln) :- take_list([A,B], L, R),
 arithop(A,B,C),
 (test(C, Target, Soln) ;
 countdown([C|R],Target, Soln)).

Countdown Iterative Deepening

diff(A,B,Diff) :- Delta is A - B, (Delta < 0 , Diff is -Delta ; Delta >= 0, Diff is Delta).

test(Soln,Target,Soln, Threshold) :- eval(Soln,Result), diff(Result,Target,Diff), Diff =< Threshold.

countdown(L,Target,Soln, Threshold) :- take_list([A,B], L, R),
 arithop(A,B,C),
 (test(C, Target, Soln, Threshold) ;
 countdown([C|R],Target, Soln, Threshold)).

We add a 'Threshold' to the search clause, implement a 'diff' function, test succeeds within bounds.

Diff =< Threshold: the approach is slightly different here than in the video (both are valid) - we are asking for
solutions within a 'distance' from the exact answer (not at an exact distance).

Countdown Iterative Deepening

diff(A,B,Diff) :- Delta is A - B, (Delta < 0 , Diff is -Delta ; Delta >= 0, Diff is Delta).

test(Soln,Target,Soln, Threshold) :- eval(Soln,Result), diff(Result,Target,Diff), Diff =< Threshold.

countdown(L,Target,Soln, Threshold) :- take_list([A,B], L, R),
 arithop(A,B,C),
 (test(C, Target, Soln, Threshold) ;
 countdown([C|R],Target, Soln, Threshold)).

 :- countdown([25,50,75,100,3,6],952,Soln,5)

Countdown Iterative Deepening

diff(A,B,Diff) :- Delta is A - B, (Delta < 0 , Diff is -Delta ; Delta >= 0, Diff is Delta).

test(Soln,Target,Soln, Threshold, Diff) :- eval(Soln,Result), diff(Result,Target,Diff), Diff =< Threshold.

countdown(L,Target,Soln, Threshold, Diff) :- take_list([A,B], L, R),
 arithop(A,B,C),
 (test(C, Target, Soln, Threshold, Diff) ;
 countdown([C|R],Target, Soln, Threshold, Diff)).

Countdown Iterative Deepening

diff(A,B,Diff) :- Delta is A - B, (Delta < 0 , Diff is -Delta ; Delta >= 0, Diff is Delta).

test(Soln,Target,Soln, Threshold, Diff) :- eval(Soln,Result), diff(Result,Target,Diff), Diff =< Threshold.

countdown(L,Target,Soln, Threshold, Diff) :- take_list([A,B], L, R),
 arithop(A,B,C),
 (test(C, Target, Soln, Threshold, Diff) ;
 countdown([C|R],Target, Soln, Threshold, Diff)).

Required Threshold Actual Difference

 :- countdown([25,50,75,100,3,6],952,Soln,5, Diff)
..EXAMPLE

Countdown Iterative Deepening

SOLUTION !Find "simpler" solutions first, then try harder...

Countdown Iterative Deepening - Conclusion

diff(A,B,Diff) :- Delta is A - B, (Delta < 0 , Diff is -Delta ; Delta >= 0, Diff is Delta).

test(Soln,Target,Soln, Threshold, Diff) :- eval(Soln,Result), diff(Result,Target,Diff), Diff =< Threshold.

countdown(L,Target,Soln, Threshold, Diff) :- take_list([A,B], L, R),
 arithop(A,B,C),
 (test(C, Target, Soln, Threshold, Diff) ;
 countdown([C|R],Target, Soln, Threshold, Diff)).

Required Threshold Actual Difference

 :- countdown([25,50,75,100,3,6],952,Soln,5, Diff)

Summary: use-case can be "find solution within threshold, check difference, find better solution ..."

Also as video: closest(L, Target, Soln, Threshold) :- range(0,100,Threshold), solve2(L,Target,Soln,Threshold).

Graph Search

Problem statement

Graph Search

Convert to graph...

Graph Search

Sample implementation (simple, given graph)

Graph Search

:- op(700, xfx, arc).
a arc g.
a arc b.
b arc c.
b arc h.
c arc d.
d arc i.
d arc j.
g arc f.
g arc l.
h arc o.
i arc p.
j arc r.
l arc s.
p arc q.
r arc u.

:- op(700, xfx, path).
X path Y :- X arc Y.
X path Y :- X arc W, W path Y.

arcs(a,[b,g]).
arcs(b,[c,h]).
arcs(c,[d]).
arcs(d,[i,j]).
arcs(g,[l,f]).
arcs(h,[o]).
arcs(i,[p]).
arcs(j,[r]).
arcs(l,[s]).
arcs(p,[q]).
arcs(r,[u]).

X arc Y :- arcs(X,Nodes),
 member(Y,Nodes).

Graph Search :- op(700, xfx, arc).
a arc g.
a arc b.
b arc c.
b arc h.
c arc d.
d arc i.
d arc j.
g arc f.
g arc l.
h arc o.
i arc p.
j arc r. Accumulating here
l arc s.
p arc q. Copying to solution here
r arc u. (via reverse/2)

% path(+Start,+Finish,-Path) succeeds if...
path(Start,Finish,Path) :- path_acc(Start,Finish,[],Path).

% path_acc(+Start,+Finish,+PathSoFar,-FullPath)
path_acc(X,Finish,Acc,Path) :- X arc Finish,
 reverse([Finish,X|Acc],Path).

path_acc(X,Finish,Acc,Path) :- X arc Z,
 path_acc(Z,Finish,[X|Acc],Path).

Accumulating the path (or cost...):

(1) Base case:

(2) Recursive case:

Next time
Videos

Difference

Empty difference lists

Difference list example

Q: you generally put the base case rule first e.g.
Split([], [], []) - wouldn't it be more efficient to put this
last since it is less likely? (fewer unifications)

Q: you generally put the base case rule first e.g.
Split([], [], []) - wouldn't it be more efficient to put this
last since it is less likely? (fewer unifications)

A: you would make a small saving if you only wanted
one answer but more answers were possible. But
you would still have all the choice points. Remember
that order often matters when you have cut.

Q: Do we need to be able to compare Prolog to ML
and functional programming? As a third year 50%er
that was all a while ago...

Q: Do we need to be able to compare Prolog to ML
and functional programming? As a third year 50%er
that was all a while ago...

A: I won’t ask you to write ML in the exam. (But I
would expect you to recall the concepts of the ML
course as a general principle - what’s the point of
your degree otherwise?)

Q: What is the underlying difference between a rule
and a compound term? Same syntax right?

Q: What is the underlying difference between a rule
and a compound term? Same syntax right?

A: a compound term is a ‘term’ in first order logic, a
rule is ‘formula’ in first order logic.

Q: Is single cut rule bad practice?
last(H,[H]).
last(X,[_|T]) :- last(X,T).
This pointlessly backtracks after finding the answer.
So change axiom to: last(H,[H]) :- !.

Q: Is single cut rule bad practice?
last(H,[H]).
last(X,[_|T]) :- last(X,T).
This pointlessly backtracks after finding the answer.
So change axiom to: last(H,[H]) :- !.

A: It's fine to put a cut on a fact. The! Thing! To!
Avoid! Is! Putting! One! Everywhere!

Next time
Videos

Difference

Empty difference lists

Difference list example

Challenge: Write a tic-tac-toe (noughts and crosses)
AI

What’s the first step?

Challenge: Write a tic-tac-toe (noughts and crosses)
AI

What predicate will you write and when will it succeed

% nextMove(Before,Player,After) succeeds if After represents the

% next state of the board after Player has made a move from state

% Before

Next step?

Challenge: Write a tic-tac-toe (noughts and crosses)
AI

Choose a representation for the board...

Challenge: Write a tic-tac-toe (noughts and crosses)
AI

Suggestion: represent each board position as a number 1 to 9, represent the state
of the board as the list of moves that have been made, e.g. [move(5,x),move(1,o)].

Challenge: Write a tic-tac-toe (noughts and crosses)
AI

Now try to implement nextMove(Before,Player,After)
Represent moves as move(Position,Player)
Represent the game state as a list of moves that have been made

Challenge: Write a tic-tac-toe (noughts and crosses)
AI

pos(Index) :- member(Index,[1,2,3,4,5,6,7,8,9]).

used(I,[move(I,_)|_]).

used(I,[_|T]) :- used(I,T).

nextMove(Before,P,[move(Index,P)|Before]) :-

pos(Index), \+used(Index,Before).

How could we make it smarter?
Teach it heuristics about good moves

● Prefer a corner at the start
● Take the middle if the corner is gone
● Win if you can
● Block the other player from winning if you can

